Centrally Extended <math xmlns="http://www.w3.org/1998/Math/MathML" id="M1"> <mi>α</mi> </math>-Homoderivations on Prime and Semiprime Rings

نویسندگان

چکیده

We present a new type of mappings called centrally extended α -homoderivations ring id="M3"> ℜ (i.e., map id="M4"> H from id="M5"> into id="M6"> which satisfies id="M7"> x + y − ∈ Z and id="M8"> for any id="M9"> , ) where id="M10"> is mapping id="M11"> discuss the relationship between these other related mappings. Also, we study their effect on center ring, give several outcomes commutativity ring.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Centralizers on prime and semiprime rings

The purpose of this paper is to investigate identities satisfied by centralizers on prime and semiprime rings. We prove the following result: Let R be a noncommutative prime ring of characteristic different from two and let S and T be left centralizers on R. Suppose that [S(x), T (x)]S(x) + S(x)[S(x), T (x)] = 0 is fulfilled for all x ∈ R. If S 6= 0 (T 6= 0) then there exists λ from the extende...

متن کامل

MATH 436 Notes: Rings

1 Rings Definition 1.1 (Rings). A ring R is a set with two binary operations + and · called addition and multiplication respectively such that: (1) (R, +) is an Abelian group with identity element 0. (2) (R, ·) is a monoid with identity element 1. (3) Multiplication distributes over addition: a · (b + c) = a · b + a · c and (b + c) · a = b · a + c · a for all a, b, c ∈ R. A ring is called commu...

متن کامل

Remarks on Generalized Derivations in Prime and Semiprime Rings

Let R be a ring with center Z and I a nonzero ideal of R. An additive mapping F : R → R is called a generalized derivation of R if there exists a derivation d : R → R such that F xy F x y xd y for all x, y ∈ R. In the present paper, we prove that if F x, y ± x, y for all x, y ∈ I or F x ◦ y ± x ◦ y for all x, y ∈ I, then the semiprime ring R must contains a nonzero central ideal, provided d I /...

متن کامل

Centralizers on semiprime rings

The main result: Let R be a 2-torsion free semiprime ring and let T : R → R be an additive mapping. Suppose that T (xyx) = xT (y)x holds for all x, y ∈ R. In this case T is a centralizer.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematics

سال: 2022

ISSN: ['2314-4785', '2314-4629']

DOI: https://doi.org/10.1155/2022/2584177